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The POLIMI hydro-meteorological chain:
the forecasting cascade system

Operational real time hydro-meteorological forecast systems are realized by use of
one-way coupling, i.e. the meteorological output variables are driven into
hydrological models
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Abstract s A \r€8 Of study

Coupling meteorological and hydrological models is recognized by scientific
community as a necessary way to forecast extreme hydrological phenomena, in
order to active useful mitigation measurements and alert systems in advance.

In order to quantify uncertainty of flood prediction, the hydrological community is
increasingly looking at the use of Ensemble Prediction System (EPS) that
produce a suite of predictions in contrast to a single forecast of traditional
deterministic modelling techniques. Due to an increase in computation power and
data transmission rates we are now in a position to use ensemble predictions
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