Incorporating spatial variability of hydrological response into flood warning system based on rainfall thresholds Giovanni Ravazzani^{1*}, Secondo Barbero², Alessio Salandin² and Marco Mancini¹ (1) Politecnico di Milano, Milan, Italy; (2) ARPA Piemonte, Turin, Italy * giovanni.ravazzani@polimi.it

1 Thresholds from inverse simulation

Case studies

2 Initial condition

(3) a **miss**, if an event occurred but the warning was not provided (**m** is the number of misses); (4) a **correct rejection**, if an event did not occur and the warning was not provided (**c** is the number of correct rejections);

Outcome	River section: Nave di Rosano	Subbiano	Pontassieve	S. Piero a Ponti	Poggio a Caiano
Hit (<i>h</i>)	2	2	4	0	1
False alarm (f)	1	3	1	1	0
Miss (m)	1	1	1	0	0
Correct reject. (c)	8	9	15	3	11
Delayed hit (d)	0	2	2	0	0
Total (n)	12	17	23	4	12

0.765

0.913

Index	Nave di Rosano	Subbiano	Pontassiev e	S. Piero a Ponti	Poggio a Caiano	
POD	0.667	0.667	0.800	-	1	Probability of detection $h/(h + m)$
FAR	0.111	0.250	0.063	0.250	0	False alarm rate $f/(f + c)$
CSI	0.615	0.545	0.759	-	1	Crit. Suc. I. 1/[1/(1 – FAR) + (1/POD) – 1
SS	0.556	0.417	0.738	-	1	Skill Score. POD – FAR
СРІ	0.833	0.647	0.826	0.750	1	Correct performance index $(c + h)/n$
		T	T			

Outcome	River section: Nave di Rosano	Subbiano	Pontassieve	S. Piero a Ponti	Poggio a Caiano
Hit (<i>h</i>)	164	224	289	90	33
False alarm (f)	24	47	53	24	1
Miss (m)	34	59	41	29	11
Correct reject. (c)	201	295	425	116	153
Delayed hit (d)	9	10	5	4	1
Total (<i>n</i>)	432	635	813	263	199
Index	Nave di Rosano	Subbiano	Pontassiev e	S. Piero a Ponti	Poggio a Caiano
POD	0.828	0.792	0.876	0.756	0.750
FAR	0.107	0.137	0.111	0.171	0.006
CSI	0.754	0.703	0.790	0.654	0.746
SS	0.722	0.654	0.765	0.585	0.744
CPI	0.845	0.817	0.878	0.783	0.935

POD	0.74
FAR	0.54
CSI	0.37
CPI	0.74

POD	0.76
FAR	0.47
CSI	0.45
CPI	0.80

Real time operation

6 References

Ceppi, A., Ravazzani, G., Salandin, A., Rabuffetti, D., Montani, A., Borgonovo, E., and Mancini, M.: Effects of temperature on flood forecasting: analysis of an operative case study in Alpine basins, Nat. Hazards Earth Syst. Sci., 13, 1051-1062, doi:10.5194/nhess-13-1051-2013, 2013.

Corbari, C., Ravazzani, G., Mancini, M. (2011), A distributed thermodynamic model for energy and mass balance computation: FEST-EWB. Hydrol. Process., 25(9), 1443-1452. doi:10.1002/hyp.7910 Miliani, F., Ravazzani, G., Mancini, M. (2011), Adaptation of precipitation index for the estimation of Antecedent Moisture Condition (AMC) in large mountainous basins. Journal of Hydrologic Engineering, 16(3), 218-227. doi:10.1061/(ASCE)HE.1943-5584.0000307

Rabuffetti, D., Ravazzani, G., Corbari, C., Mancini, M. (2008), Verification of operational Quantitative Discharge Forecast (QDF) for a regional warning system – the AMPHORE case studies in the upper Po River. Nat. Hazard Earth Sys. 8, 161-173.

Montaldo, N., Ravazzani, G., Mancini, M. (2007), On the prediction of the Toce alpine basin floods with distributed hydrologic models. Hydrol. Processes 21, 608-621.

Ravazzani, G., Mancini, M., Giudici, I., Amadio, P. (2007), Effects of soil moisture parameterization on a real-time flood forecasting system based on rainfall thresholds. In: Quantification and Reduction of Predictive Uncertainty for Sustainable Water Resources Management (Proceedings of Symposium HS2004 at IUGG2007, Perugia, July 2007), IAHS Publ. 313, 407-416.

