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Motivation 

An illustration of the hyporheic zone 
(© Joerg Lewandowski, IGB) 

The transition zone between surface 
water in streams and groundwater has a 
key role for: 
• maintaining the ecological functions 

of running waters 
• understanding hydrodynamic 

processes (exfiltration or gaining 
condition and infiltration or losing 
condition) 

• Predicting water quality issues caused 
by polluted water transported 
between groundwater and surface 
water 
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Objectives 

• Investigating river-groundwater interaction of a large Alpine 
river, in Italy, through a field campaign 
 

• Implementing a distributed hydrological model that includes 
groundwater flow and interaction with river 
 

• Predicting infiltration and exfiltration conditions for different 
flow regimes 

Ravazzani, G., Curti, D., Gattinoni, P., Della Valentina, S., Fiorucci, A., 
Rosso, R., 2015. Assessing groundwater contribution to streamflow of 
a large Alpine river with heat-tracer methods and hydrological 
modeling. River Research and Applications, 32(5), 871-884, doi: 
10.1002/rra.2921 
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The Toce Alpine river basin 
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Total area: 1800 km2 
 

Area at Candoglia: 1500 km2 
 

Area at Prata: 1100 km2 
 
 

Discharge gauging station in Candoglia  
 
Field campaign for groundwater-river flux 
assessment in Prata 
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The flow duration curve 
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Heat-tracer methods 
Transient heat transport solution 

Damping and phase attenuation of 
temperature with depth 
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Keery et al. (2007) 

λe  thermal conductivity of saturated sediment [MLT−3K−1] 
ρ density of the saturated sediment [ML-3]  
c specific heat capacity of the saturated sediment [ML2T−2K−1]  
z  vertical distance [L] 
 qz specific flow  [LT-1], 
ρw density of water [ML-3] 
cw specific heat capacity of the water [ML2T−2K−1] 
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Temperature profile along a vertical 
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Heat-tracer methods 
Steady-state heat transport solutions 
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Bredehoeft and Papadopulos (1965) 
Schmidt et al., (2006) 

λe  thermal conductivity of saturated sediment [MLT−3K−1]  
T  temperature [K] 
z  vertical distance [L] 
 qz specific flow  [LT-1], 
ρw density of water [ML-3] 
cw specific heat capacity of the water [ML2T−2K−1] 
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Field campaign 
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Field campaign 

Transient heat transport solution 

Steady-state heat transport solutions 

qz [m/d] = -0.31 

qz [m/d] = -0.33 

Q [m3/s] = 7.17  

Q [m3/s] = 7.64  
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The flow duration curve with groundwater interaction 
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Modelled infiltration and exfiltration condition 

Toce river basin infiltration exfiltration 

High flow Low flow 
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Conclusions 

• Through a field campaign we assessed that groundwater contribution to 
Toce streamflow is significant when river discharge is low 
 

• A groundwater model that interacts with river flow was implemented and, 
as a result, underestimation of river discharge for low flow regime was 
eliminated. 
 

• Modelled groundwater contribution to streamflow is in agreement with the 
field campaign results 
 

• the distributed hydrological model allows to predict infiltration and 
exfiltration conditions even for high discharge when a field campaign would 
not be possible 
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This presentation is available on 
www.ravazzani.it 
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