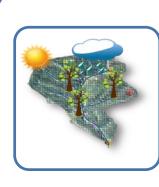


The response of Bonis Catchment in Calabria -Southern Italy to different management options under climate change scenarios

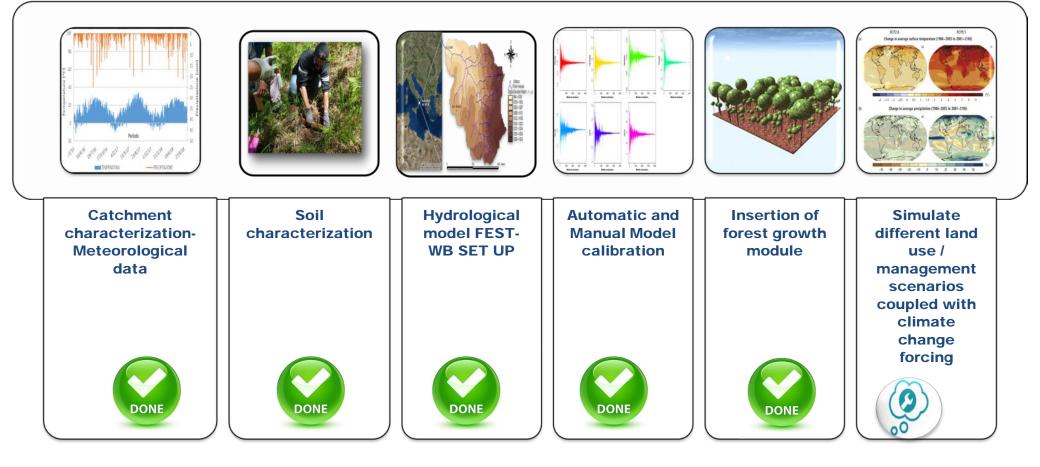
Mouna Feki, Giovanni Ravazzani, Tommaso Caloiero and Gatano Pellicone



Project : INNOMED

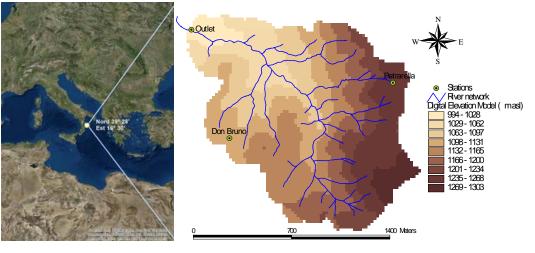
Study case : Bonis catchment-Calabria

southern Italy



Objectives: In the INNOMED project in the Bonis catchment are to simulate the water balance of the Bonis catchment under different land use / management scenarios, combined with climate change forcings to quantify the effect of alternative management options on the land-water cycle.

Bonis catchment



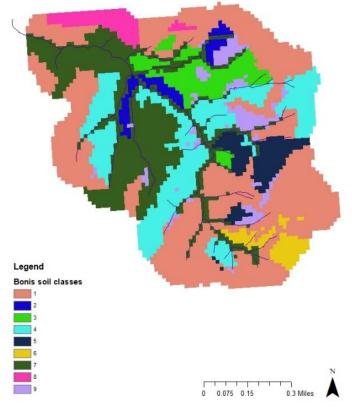
Catchment characterization-Meteorological data

Data from 1986 were collected from 3 Meteorological stations:

- Basin outlet (Outlet: 975 m a.s.l.)
- **Petrarella**: 1258 m a.s.l.) located in the north-eastern of the catchment
- (**Don Bruno**: 1175 m a.s.l.) located in the southwestern part of the catchment.

In May 2003 a tower for the measurement of fluxes with the Eddy covariance technique was installed in a plantation of 44-year old Laricio pines, in Cozzarella – Don Bruno location.

The runoff is measured at the outlet of the watershed using a gauging structure.



Landuse map of Bonis catchment

We carried out the automatic calibration considering the different landuses of catchment.

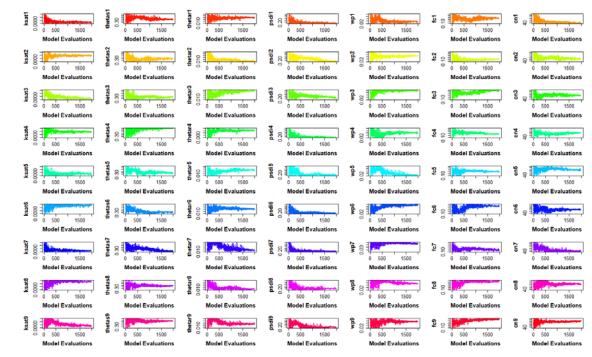
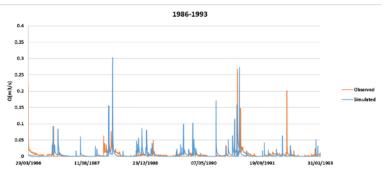
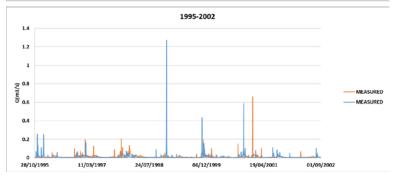




Figure results of soil parameters calibration using HydrPSO model

Results of hydrological simulation

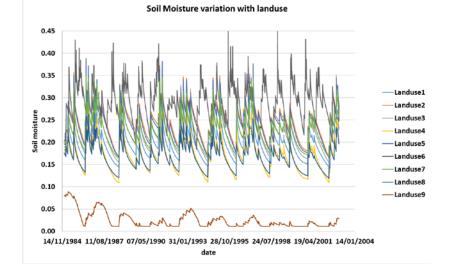


Figure. Simulated Vs observed surface runoff

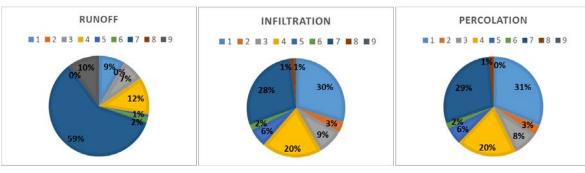
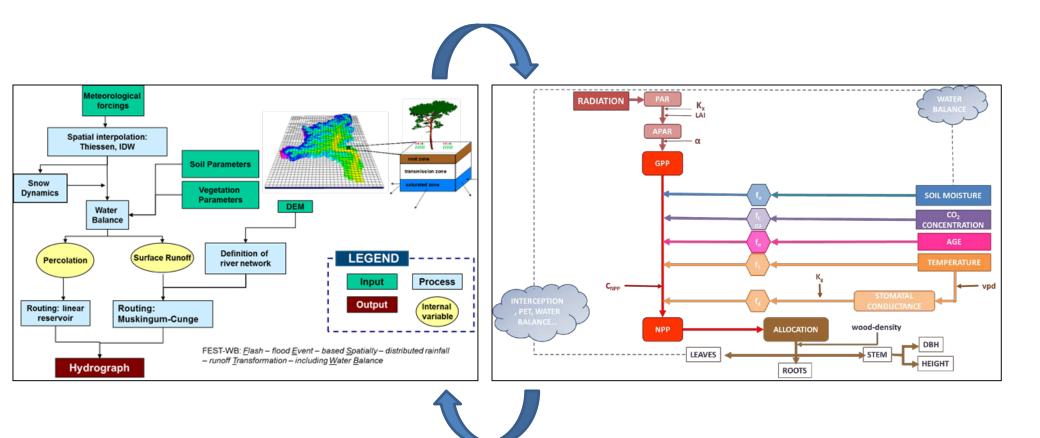



Figure. Contribution of each landuse to surface runoff, infiltration and percolation

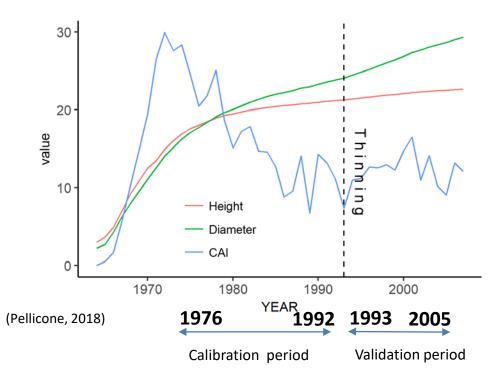
The integration of forest growth modules at FEST-WB

	Deremeter		Davy Nurr			DesimalP
ParameterNmbr	Parameter Name	Filename	Row.Num ber	Col.Start	Col.End	DecimalPl aces
- di di di licteri di lici	i unic	PlantsSpe	JC.	constant	concina	dees
1	k	cies.ini	9	6	12	2
		PlantsSpe				
2	alpha	cies.ini	10	10	17	3
		PlantsSpe				
3	GPP-NPP	cies.ini	11	12	18	2
		PlantsSpe				
4	cra	cies.ini	12	8	11	0
-	crb	PlantsSpe cies.ini	13	8	13	2
5	CrD	PlantsSpe	15	٥	15	2
6	crc	cies.ini	14	8	12	1
-		PlantsSpe				-
7	as	cies.ini	15	7	13	2
		PlantsSpe				
8	ns	cies.ini	16	7	13	2
		PlantsSpe				
9	dbhdcmin		20	13	19	3
		PlantsSpe				
10	dbhdcmax		21	13	19	3
11	denmin	PlantsSpe cies.ini	22	11	15	0
11	dennin	PlantsSpe	22	11	15	U
12	denmax	cies.ini	23	11	16	0
	actinitax	PlantsSpe	25		10	Ū
13	agemax	cies.ini	24	11	15	0
	Č	PlantsSpe				
14	phi-theta	cies.ini	28	14	16	0
		PlantsSpe				
15	phi-ea	cies.ini	29	11	16	2
		PlantsSpe				
16	fpra	cies.ini	35	9	16	3
17	fprn	PlantsSpe cies.ini	36	9	15	2
17	ipm	PlantsSpe	50	9	15	2
18	spra	cies.ini	37	9	15	2
10	spru	PlantsSpe	5,	5	15	-
19	sprn	cies.ini	38	9	15	2
		PlantsSpe				
20	tcold-leaf		44	15	17	0
		PlantsSpe				
21	sla	cies.ini	45	8	15	3
		PlantsSpe				
22	hdmax	cies.ini	46	10	15	1
22	hdmin	PlantsSpe cies.ini	47	10	15	1
23	numm	PlantsSpe	47	10	15	1
24	albedo	cies.ini	48	11	17	2
24		PlantsSpe	40		1/	
25	laimax	cies.ini	49	11	13	0
	canopyma					
26	x	cies.ini	50	14	21	3
	wood-	PlantsSpe				
27	density	cies.ini	51	17	22	0

Innomed

Parameters considered for the calibration

All required inputs for FEST-FOREST


- S.A was carried out using the HydroPSO model.
- This later was carried out with regard to the DBH parameter

1			1
	RankingNmbr	ParameterName	
(1	wood-density	
	2	sprn	
	3	fprn	
	4	GPP-NPP	
U	5	alpha	
	6	hdmin	
	7	agemax	
	8	albedo	
	9	k	
	10	fpra	
	11	spra	
	12	phi-theta	
	13	phi-ea	
	14	hdmax	
	15	sla	
	16	dbhdcmax	
	17	denmax	1
	18	tcold-leaf	1
	19	canopymax	1
	20	laimax	
	21	dbhdcmin	
	22	denmin	
	27	cra	1
	27	crb	
	27	crc	1
	27	as	1
	27	ns	
			-

Historical data from Bonis catchment

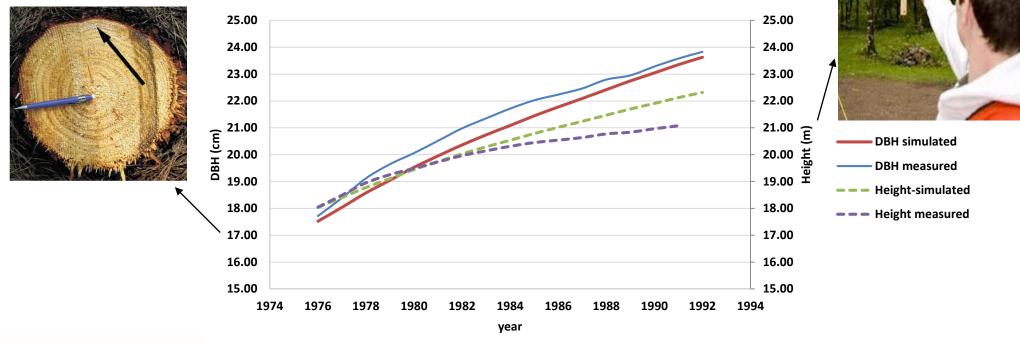
YEAR	Variables	Values
	Plant number (N/ha)	1120
1986	Basal area (m²/ha)	43.2
	DBH (cm)	20.2
	Plant number (N/ha)	1100
1993*	Basal area (m²/ha)	46.6
	DBH (cm)	21.8
	Plant number (N/ha)	700
1993**	Basal area (m²/ha)	32.4
	Diameter (cm)	22.8
	Plant number (N/ha)	690
1999	Basal area (m²/ha)	45.8
	DBH	27.4

Historical dendrological analysis. 1993* represents the dendrological measure before the thinning, while 1993** the dendrological data right after the thinning (DBH = diameter at breast height).

Innomed

Results

Model showed to reproduce satisfactorily the observed patterns for each year for tree height, tree diameter



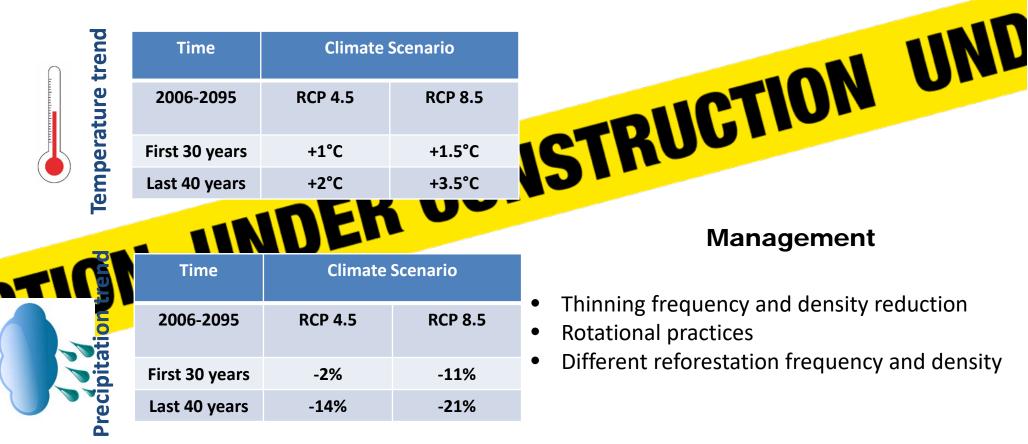


Figure. Results of DBH and Height simulations using FEST-WB Vs measurements

Climate change and management scenarios considered in the simulations

Climate

Considering the projected trends of variation of temperature and precipitations, we are expecting more drought conditions at Bonis catchment, so the management options should take into consideration these projections.

Some of the management options that could be taken into consideration by the stockholders to cope with the effects of the climate change, were tested by the different simulations. Each of these management options simulations results are currently under assessment not only on the forest growth and carbon assimilation but also considering the impacts on different

components of the water balance namely : surface runoff, and soil moisture

THANK YOU FOR YOUR ATTENTION mouna.feki@polimi.it

The authors would like to thank the EU, the Ministerio de Economía, Industria y Competitividad of Spain, the Research Promotion Foundation of Cyprus, the Agence Nationale de la Recherche and the Office national de l'eau et des milieux aquatiques of France, the Ministry for Education, University and Research of Italy, the Center of International Projects of Moldova, and the Foundation for Science and Technology of Portugal for funding, in the frame of the collaborative international Consortium INNOMED financed under the ERA-NET WaterWorks2015 Cofunded Call. This ERA-NET is an integral part of the 2016 Joint Activities developed by the Water Challenges for a Changing World Joint Programme Initiative (Water JPI) as a result of a joint collaborative effort with the Joint Programming Initiative on Agriculture, Food Security and Climate Change (FACCE JPI).

