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ABSTRACT 

A groundwater model representing two-dimensional flow in unconfined aquifers is 

presented. The model is based on the paradigm of the macroscopic cellular 

automata, that represents dynamical systems which are discrete in space and time, 

operate on a uniform, regular lattice and are characterised by local interactions. 

Physically based equations are implemented to simulate the flow of water between 

adjacent cells. The model was validated against solutions of simple problems 

including analytical solution and simulation performed with MODFLOW-2000 

model. The developed code is simple enough to facilitate its integration into other 

models such as land surface models.. The good performance without detriment to 

accuracy makes the model adequate to perform long simulation time analysis. 

1 INTRODUCTION 

Groundwater models historically have been applied to aquifer management 

problems (Ponzini et al., 1989). To this purpose, many sophisticated numerical models 

have been developed to simulate water fluxes in complex heterogeneous multi layered 

aquifers (Zyvoloski, 2007; Hughes and Liu, 2008), while surface water processes are 

often oversimplified ignoring runoff, actual evapotranspiration, and snow dynamics 

(Giudici et al, 2000). On the other hand, traditional Land-Surface Models (LSM) are 

designed with emphasis on surface water movement whereas the subsurface is 

commonly simulated by means of simple conceptual approaches or assumed as zero 

flux boundary (Niu et al., 2007). However, in many circumstances the interaction 

between surface and groundwater plays a crucial role, so that integrated modelling 

approaches become fundamental for application to water resources planning and 

management (Facchi et al., 2004), also in light of the demands of the European Water 

Framework Directive (WFD; 2000/60/EU). In these situations, despite the eventual 

complexity of the aquifer system, the modelling of the surficial unconfined layer, is 

often sufficient to simulate water exchange between surface water and the underlying 

water table (Wondzell et al., 2009). Moreover, in order to run long time simulations at 

fine resolution, the model is required to be as simple as possible to provide reliability, 

efficiency and flexibility. Fortunately, the common belief that very complex phenomena 

require necessarily sophisticated models has been shown to be erroneous: complexity 

can arise in a model even if governed by very simple rules (cf. e.g. Wolfram, 2002). 

Among these approaches Cellular Automata (CA) represent a simple, attractive and 
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alternative modelling technique respect to traditional numerical models that solve 

differential equations to describe complex phenomena (Toffoli, 1984). Cellular 

Automata are dynamical systems which are discrete in space and time, operate on a 

uniform, regular lattice and are characterised by local interactions. They were 

introduced by von Neumann (1966) to study self-reproducing systems and have been 

later used for modelling disparate complex physical phenomena (Di Gregorio et al., 

1999). Models based on CA are directly compatible with parallel programming and so 

they allow to easily exploit the power of modern computers. 

These CA make use of local laws that are ruled by empirical parameters. As these 

latter can have no direct link with classical physical parameters, an accurate calibration 

phase is generally required (Iovine et al., 2005). At the contrary, physically based 

Macroscopic Cellular Automata (MCA), in which local rules derive directly by physical 

laws and depend on physical parameters, do not require a similar calibration (Mendicino 

et al., 2006).  

In this work, physically based MCA are the reference computational paradigm of a 

new two-dimensional model developed to simulate water flux in saturated aquifers. The 

model is developed for its inclusion in a distributed hydrological model (Ravazzani et 

al., 2007; Rabuffetti et al., 2008), with the aim of simulating water exchange between 

surface soil, river network and the underlying aquifer. The model is validated against 

typical problems in the study of alluvial aquifers: transient drawdown due to a constant 

pumping rate from a well, and aquifer response to stream-stage variation. Benchmarks 

include analytical solution and numerical simulation performed with MODFLOW-2000. 

2 MODEL FORMULATION 

The developed model, MACCA-GW (MACroscopic Cellular Automata for 

GroundWater modelling), is based on CA paradigm and consists of four primary 

components: a lattice of cells, the definition of a local neighbourhood area, transition 

rules determining the changes in cell properties, and boundary conditions (Parsons & 

Fonstad, 2007). To simulate water flux in unconfined aquifer, a two-dimensional lattice 

of cells is created. Each cell is instantiated with a value of saturated hydraulic 

conductivity, Ks [L/T], a value of specific yield, Sy [-], elevation of the bottom of the 

aquifer [L] and initial head [L]. The cell size must be small enough so that physical 

properties can be considered homogeneous in the cell space, but large enough to 

achieve macroscopic description of the physical processes. The cell size is set as s = 

x = y. 

The neighbourhood in CA models defines the area of process influence. Among 

those proposed in literature for two-dimensional CA with square tessellation, as that 

here presented, the von Neumann and Moore ones are the most adopted: the von 

Neumann neighbourhood considers the group of four cells in the four cardinal 

directions from the central one, while the Moore neighbourhood also includes the 

adjacent cells along diagonals. The Von Neumann neighbourhood has been chosen as 

the basis of the CA model developed in this work. 

To give physical meaning to the rule defining water interaction between two 

adjacent cells, the Darcy law is assumed. According to this, the water flux between 

central cell and, for example, northern cell, QNC [L
3
 T

-1
], is calculated as: 
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where TN and TC represent, respectively, the transmissivity [L
2
 T

-1
] of northern cell 

and central cell, 
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Ch  represent, respectively, hydraulic head [L] of northern cell 
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 is the harmonic mean of 

transmissivity. It has been chosen because of its property to remove the impacts of large 

outliers by limiting the flux to the lower value of transmissivity. The flux is positive if 

entering the central cell. 

The total flux entering the central cell is (Figure 1): 

 CWCSCECNCC WQQQQQ   (2) 

where WC [L
3
 T

-1
] is the volumetric flux representing sources (+) or sinks (-). 
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Figura 1. Scheme for the calculation of water fluxes between the central cell and the four 

adjacent cells. WC is the volumetric flux representing source (entering the cell) or sink (exiting the 

cell). 

Hydraulic head at central cell is updated for the subsequent time, t+1, applying the 

discrete mass balance equation: 
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where t [T] is the time step.  

The final component of a CA model is the boundary condition that describe what 

happens at the outer cells of the lattice. The boundary conditions can be of Dirichlet or 
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Neumann type (Kinzelbach, 1986). Dirichlet conditions specify the head h; Neumann 

conditions specify the flux, i.e., the head gradient xh   orthogonal to the boundary. 

Neumann conditions are type A (permeable) or type B (impermeable). A Neumann type 

A condition specifies a finite gradient, i.e., 0 xh ; conversely, a Neumann type B 

condition specifies a zero gradient, i.e., 0 xh . 

3 MODEL TESTING 

In order to test MACCA-GW numerical properties, a prototype artificial domain was 

considered, a 1-km
2
 square aquifer (1 km X 1 km) with saturated hydraulic conductivity 

Ks = 1.25·10
-5

 m/s, and specific yield Sy = 0.1. The space interval was set as s = 10 m, 

i.e., a total of 100 x 100 = 10000 grid nodes. The model was subjected to two tests: the 

first to verify model’s ability to reproduce unsteady water table depletion due to 

pumping from a well, and the second to test the model in an important problem in the 

study of alluvial aquifers that is the simulation of aquifer response to stream-stage 

variation. The results of MACCA-GW simulations were compared to analytical 

solutions, where available, and MODFLOW-2000 numerical results.  

Simulations with MODFLOW-2000 were performed using harmonic mean scheme 

for the computation of interblock transmissivity and the WHS solver with residual 

tolerance for the convergence criterion = 0.0001 m that proved to be a good 

compromise between accuracy and computation speed. 

The tests were performed on a computer with a Intel Pentium D dual core 2.80 GHz 

CPU and 1 GB RAM. 

3.1 Drawdown due to a constant pumping rate from a well 

The first stage of MACCA-GW testing has the purpose to verify the numerical 

model with respect to transient solution of head drawdown due to a constant pumping 

rate from a well. The first mathematical analysis was obtained by Theis (1935), under 

the assumptions that: (a) the aquifer is confined and compressible; (b) there is no source 

of recharge to aquifer; (c) water is released instantaneously from the aquifer as the head 

is lowered; (d) the well is fully penetrating.  

The solution of unsteady distribution of drawdown is expressed by: 
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where s, is drawdown [L]; Q, is the constant pumping rate [L
3
T

-1
]; t, time since 

pumping began [T]; r, radial distance from the pumping well [L]. The integral 

expression in equation 10 is termed the well function. It is generally evaluated with 

analytical approximation. In this paper we adopted the solution proposed by Barry et al. 

(2000) valid for all values of the argument of exponential integral. The Theis equation 

can be extended to describe flow in unconfined aquifers if the drawdown is small 

relative to the saturated thickness of the aquifer (Jacob, 1950). 

The domain was setup applying Dirichlet condition on the entire boundary with 

hydraulic head h = 50 m, as well as initial condition. A well with a constant pumping 

rate of 0.001 m
3
/s was placed in the central cell. The time step was set to 4000 s. 

Monitoring wells were placed along cardinal direction at a distance of 150, 200, 300 m 

from the pumping well. Two monitoring wells were placed on the 45 degrees direction 

at a distance of 127 and 170 m to investigate the eventuality that von Neumann 

neighbourhood could generate privileged directions. A further monitoring well was 

positioned at the cell adjacent to the boundary to verify if boundary condition could 

have influence on the cone of depression. 
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Figura 2. Comparison between analytical (Theis) and numerical solution (MACCA-GW and 

MODFLOW) for head drawdown due to a constant pumping rate of 0.001 m3/s at distance r = 

150, 200 and 300 m from the well along cardinal direction, and r = 127 and 170 m on the 45 

degrees direction. 
 

Figure 2 illustrates the depletion computed by MACCA-GW and MODFLOW-2000 

compared to analytical solution for a 12 days duration after the beginning of the 

pumping. A very good fit can be observed in both monitoring wells along cardinal and 

diagonal direction. The calculating time was 1.125 s for MACCA-GW and 5.204 s for 

MODFLOW-2000. 

3.2 Aquifer response to stream-stage variation 

Rivers contribute water to or drain water from the ground-water system, depending 

on the head gradient between the river and the ground-water regime. Quantification of 
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stream/aquifer hydraulics is an important problem in the study of alluvial aquifers.  

This section has the purpose to test MACCA-GW’s ability to simulate the aquifer 

response to stream-stage variation compared to the solution obtained by MODFLOW-

2000.  

The river-aquifer interconnection was simulated by use of the RIVER package in 

MODFLOW-2000, which allows stream to gain or lose water. The stream stage is used 

to calculate the flux between the stream and aquifer system, proportional to the head 

gradient between the river and aquifer and a streambed conductance parameter. When 

the aquifer head is above the bottom of the streambed, MODFLOW-2000 assumes that 

the discharge through the streambed is proportional to the difference in hydraulic head 

between the stream and aquifer: 

  hh
M

LWK
Q w

sb   (7) 

where Q is the discharge [L
3
/T] with a downward flux assumed positive, Ksb is the 

streambed hydraulic conductivity [L/T], L is the stream length [L], W is the stream 

width [L], M is the streambed thickness [L], hw is the hydraulic head in the stream [L], 

and h is the hydraulic head in the aquifer [L]. The term KsbW/M is defined hydraulic 

conductance of the streambed [L/T]. If the aquifer head drops below the bottom of the 

streambed, the model assumes that the seepage is no longer proportional to the aquifer 

head and becomes dependent on the water level in the stream and the streambed 

thickness  

  MH
M

LWK
Q w

sb   (8) 

where Hw is the water level in the stream above the surface of the streambed [L]. At 

the start of each iteration, terms representing river seepage are added to the flow 

equation for each cell containing a river reach. 

The same scheme was implemented in the MACCA-GW model. To perform the test, 

the domain was setup applying a constant head h = 50 m on the west and east boundary, 

as well as initial condition, and a Neumann type B condition on north and south 

boundary. The time step was set to 4000 s. A river was placed with north-south 

direction at a distance of 250 m from the west boundary (Fig. 3). River bottom is 

supposed to be at 46.5 m. Riverbed conductivity and thickness are, respectively, 1·10
-5

 

m/s and 0.5 m. Width of the river is 5 m. Monitoring wells were placed at a distance of 

100, 350, 450, 550, and 650 m from the west boundary as shown in Figure 3. 
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Figura 3. Scheme of the domain setup to perform the simulation of the aquifer response to 

stream-stage variation: location of river, boundary conditions and monitoring wells (W10, W35, 

W45, W55, and W65) is shown. 

The simulation time was 30 days and the river stage was supposed to increase with a 

sinusoidal variation to a maximum of 50 m as reported in Figure 4 where the 

comparison between MACCA-GW and MODFLOW-2000 results is performed. A good 

agreement can be observed. The calculating time was 1.36 s for MACCA-GW and 

16.36 s for MODFLOW-2000. 

4 CONCLUSIONS 

A cellular automata on a regular grid representing two-dimensional groundwater 

flow in unconfined aquifer was presented. Physically based equations are implemented 

to simulate the flow of water between adjacent cells. This makes easier the setting of 

model parameters and their calibration. The model can account for sources or sinks and 

boundary conditions of Dirichlet or Neumann type. River-aquifer interaction can be 

simulated: the stream stage is used to calculate the flux between the stream and aquifer 

system, proportional to the head gradient between the river and aquifer and a streambed 

conductance parameter. 
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Figura 4. Comparison between analytical (Theis) and numerical solution (MACCA-GW and 

MODFLOW) for head drawdown due to a constant pumping rate of 0.001 m3/s at distance r = 

150, 200 and 300 m from the well along cardinal direction, and r = 127 and 170 m on the 45 

degrees direction. 

The accuracy of the model was evaluated considering two testing problems the 

drawdown due to a constant pumping rate from a well, and the aquifer response to 

stream-stage variation. Comparison with analytical solution and MODFLOW-2000 

numerical results showed a good agreement. 

The MACCA-GW model, thank to the explicit numerical scheme based on 

macroscopic cellular automata that does not perform inner iterations, proved to be fast 

in simulating the investigated transient phenomena: it resulted from 4.6 to 12 times 

faster than MODFLOW-2000. 

The code of MACCA-GW model is simple enough to facilitate its integration into 

other models such as distributed model that simulate water and energy fluxes at the 

interface between soil and atmosphere. The good performance in terms of calculating 

time without detriment to model’s accuracy, makes the MACCA-GW adequate to 

perform long simulation time analysis. 
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